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Abstract A recently developed inversion method for pentadiagonal matrices is
reconsidered in this work. The mathematical structure of the previously suggested
method is fully developed. In the process of establishing the mathematical structure,
certain determinantial relations specific to pentadiagonal matrices were also estab-
lished. This led to a rather general necessary and sufficient condition for the method
to work. All the so called forward and backward leading principal submatrices need to
be non-singular. While this condition sounds restrictive it really is not so. These are in
fact the conditions for forward and backward Gauss Eliminations without any pivot-
ing requirement. Additionally, the method is more effective computational complexity
wise then recently published competitive methods.

Keywords Direct methods for linear systems and matrix inversion ·
Difference equations · Matrices, determinants

1 Introduction

Tridiagonal matrices facilitate their inversion and eigenvalue problems due to their
three-term-recursive natures. This feature may enable us to find general analytic solu-
tions to these recursions. Nevertheless there exist a lot of numerical methods for these
equations. In nonunderestimatedly many cases, five or four term recursions can be
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rather easily constructed and await being solved. Mathematical chemisty is one of
the fields where such recursion may appear. Hence their solution, or in other words,
the inversion of the pentadiagonal matrices gain importance even in mathematical
chemistry [1]. This work is devoted to this task.

Here, we reconsider the inversion method for pentadiagonal matrices previously
suggested by the present authors [2]. We give a necessary and sufficient condition for
the method to work, and also discuss its computational cost. The results are applicable
to Huang and McColl’s case for tridiagonal matrices too [3]. Therefore, the range of
applicability of their method is extended. First, the method is reintroduced briefly, and
then the lemmas and their mathematical explanations are made. Finally, the necessary
and sufficient condition is proven and the whole formulation for the method is shown
as mathematical structures. In the last part, computational cost is analyzed.

2 The method

In this work we revisit the method developed by the present authors to construct the
inverse of an N × N adjacent pentadiagonal matrix with real elements. The matrix
under consideration is as follows.

AN =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 d1 e1 0 · · · · · · · · · · · · 0
b2 c2 d2 e2 0 · · · · · · · · · 0
a3 b3 c3 d3 e3 0 · · · · · · 0

0
. . .

. . .
...

... 0
. . .

. . .
...

...
. . .

. . . 0
...

. . .
. . . eN−2

...
. . .

. . . dN−1
0 · · · · · · · · · · · · 0 aN bN cN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Although the method was given elsewhere [2] we shall briefly summarize it here.
Define a1, a2, b1, dN , eN−1 and eN as zero for the sake of notation consistency. Let
the inverse matrix A−1

N be called �N . To develop an algorithm consider the multipli-
cation of the matrix AN with the j th column of �N . The product will correspond to
the jth column of the N byN unit matrix IN . Using the notation and with the help
of the recursive relationship in the multiplication AN�N , the following second-order
difference equations can be obtained.

φN (i, j) =
{− [

Xi+2φN (i + 1, j)+ Yi+2φN (i + 2, j)
]
, i < j

− [
Tcol−iφN (i − 1, j)+ Zcol−iφN (i − 2, j)

]
. i > j

(2)

where X1 ≡ 0, X2 ≡ 0, X3 ≡ d1/c1 and Y1 ≡ 0,Y2 ≡ 0,Y3 ≡ e1/c1 and also
col ≡ N + 3, T1 ≡ 0, T2 ≡ 0, T3 ≡ bcol−2/ccol−3 and Z1 ≡ 0, Z2 ≡ 0, Z3 ≡
acol−2/ccol−3.
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Xi = (di−2 + Xi−2Yi−1ai−2 − Yi−1bi−2) /αi (3)

Yi = ei−2/αi (4)

αi = ci−2 + Xi−2 Xi−1ai−2 − (Xi−1bi−2 + Yi−2ai−2) (5)

Ti = (bcol−i + Ti−2 Zi−1ecol−i − Zi−1dcol−i ) /ηi (6)

Zi = acol−i/ηi (7)

ηi = ccol−i + Ti−2Ti−1ei−2 − (Ti−1dcol−i + Zi−2acol−i ) (8)

For the sake of convenience α1 ≡ 0, α2 ≡ 0, η1 ≡ 0 and η2 ≡ 0 choices are made.
αi ’s are scaling factors required by the method and so are ηi ’s. (3), (4) and (5) are used
for obtaining upper triangular elements of the inverse matrix, similarly (6), (7) and (8)
are used for obtaining lower triangular elements of the inverse matrix. Solving these
equations the following equalities are obtained.

φN (i, i)=
[
αi+2−e j Z N+1−i − (Xi+2αi+2−ei TN+1−i ) (TN+2−i −Z N+2−i Xi+1)

1−Z N+2−i Yi+1

]−1

(9)

φN (i + 1, i) =
[

Xi+2αi+2 − ei TN+1−i − (αi+2 − ei Z N+1−i ) (1 − Z N+2−i Yi+1)

TN+2−i − Z N+2−i Xi+1

]−1

(10)

Now, to start considering how these equations and relations can be used to suggest
a method for calculating �N , calculate all of the Xi ,Yi , Ti and Zi values at the first
step. At the next step, calculate the diagonal and subdiagonal elements of �N , that is
φN (i, i) and φN (i + 1, i). Now start utilizing (2) to build up the upper elements of the
inverse matrix�N starting from the last elementφN (N , N ) and a hypothetical element
φN (N + 1, N )which is set equal to zero. When this is done, construct the elements in
the upper part of�N column by column starting from the element φN (N − 2, N − 1)
upwards and so on. The same procedure follows for the lower part of �N .

3 Conditions for the method to work

We shall start by defining forward and backward leading principal submatrices of an
N × N pentadiagonal matrix AN . In fact the forward leading principal submatrix Ai

is the well-known i th leading principal submatrix obtained by deleting all rows and
columns of AN after its i th row and i th column. Similarly, the backward leading prin-
cipal submatrix (N−i)A is obtained by deleting all rows and all columns of AN up to
its (N − i)th row and (N − i)th column.

Investigating the equalities which help us find the values of �N , we realize that
these equalities can have singularity problems since their denominators can become
zero. The following lemmas lead to a theorem giving us the necessary and sufficient
condition for the method to work.

Lemma 3.1 For i ≥ 6 �i ,Bi , γi and βi are defined as follows.

�i = Bi−1di−2 − Bi−2ei−3bi−2 + �i−2ei−3ai−2 (11)

Bi =Bi−1ci−2−�i−1bi−2+ai−2
[
�i−2di−3−ei−4 (Bi−3ei−3−Bi−4ai−3ei−5)

]
(12)

γi = βi−1bcol−i − βi−2acol−i+1dcol−i + γi−2acol−i+2ecol−i (13)

123



292 J Math Chem (2012) 50:289–299

βi = βi−1ccol−i − γi−1dcol−i + ecol−i[
γi−2bcol−i+1 − acol−i+2 (βi−3ccol−i+1 − βi−4acol−i+3ecol−i+1)

]
(14)

Assume Gi−2 is the matrix obtained after deleting (i − 1)th row and (i − 2)th column
of the pentadiagonal matrix Ai−1. �i and Bi are equal to the determinants of the
Gi−2 and Ai−2, respectively. Similarly, 1 A is the (N − 1)× (N − 1) backward lead-
ing principal pentadiagonal submatrix. 2 H is the (N − 2)× (N − 2)matrix obtained
by deleting the (N + 2 − i)th row and the (N + 3 − i)th column of 1 A. γi and βi

correspond to the determinans of 2 H and 2 A respectively.
Proof Special equalities can be written for the case i < 6. We shall use induction to
prove the lemma by assuming the equalities to be valid for all the steps up to (i − 1)
and show that they are true for the i th step.

Assume that the theorem is valid up to �i−1 and Bi−1. Consider the (i − 1) dimen-
sional pentadiagonal matrix and remove the (i − 1)th row and the (i − 2)th column.
This can be shown as

(15)

Starting the evaluation of the determinant from di−2, we begin with Bi−1di−2x . If we
continue on the classical determinant process with ei−3, the result is Bi−2bi−2ei−3. The
last additive expression is �i−2ei−3ai−2 for ai−2. Summations of these expressions
give the equality (11).

For proving equality (12), we concentrate on the determinant of the (i − 2) dimen-
sional adjacent pentadiagonal matrix. Starting with ci−2 gives the expression Bi−1ci−2.
Similarly continuing with bi−2 results in the expression �i−1bi−2. The last part of the
determinant is the part with the multiplier ai−2.

Ai−2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 0 0 0
. . .

...
...

...

. . . 0 0 0
. . . ei−6 0 0

ci−5 di−5 ei−5 0
0 · · · 0 ai−4 bi−4 ci−4 di−4 ei−4
0 · · · · · · 0 ai−3 bi−3 ci−3 di−3

0 · · · · · · · · · 0 ai−2 bi−2 ci−2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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Using the matrix in (16), the last part for the determinant is Bi−4ai−2ai−3ei−4ei−5.
All these, give the equality (12).

A similar treatment gives equalities (13) and (14).

Lemma 3.2 Equalities (3), (4), (6) and (7) in the method section are respectively
expressed as follows.

Xi = �i/Bi (17)

Yi = (Bi−1ei−2) /Bi (18)

These yield

αi = Bi/Bi−1 (19)

Proof If we start with the case i < j for 1 ≤ i ≤ k − 1 < j − 1, equality (2) gives

φN (k − 1, j) = − [
Xk+1φN (k, j)+ Yk+1φN (k + 1, j)

]
(20)

φN (k − 2, j) = − [XkφN (k − 1, j)+ YkφN (k, j)] (21)

for i = k − 1 and i = k − 2, respectively. For the proof we assume that it is true up to
the (k − 1)th step, and show that it is true for the kth step. The result of multiplying
the kth row of AN with the kth column of �N is

akφN (k − 2, j)+ bkφN (k − 1, j)+ ckφN (k, j)+ dkφN (k + 1, j)

+ ekφN (k + 2, j) = 0 (22)

Using (20) and (21) in (22) gives

[
ck + Xk Xk+1ak − (Xk+1bk + Ykak)

]
φN (k, j)

+ (dk + XkYk+1ak − Yk+1bk) φN (k + 1, j)+ ekφN (k + 2, j) = 0 (23)

After multiplication of Bk+1 with Eq. (23) the following equation is obtained.

[
Bk+1ck + Bk+1 Xk Xk+1ak − Bk+1 (Xk+1bk + Ykak)

]
φN (k, j)+

+ (Bk+1dk + Bk+1 XkYk+1ak − Bk+1Yk+1bk) φN (k + 1, j)

+ Bk+1ekφN (k + 2, j) = 0 (24)

For proving (17) and (18), the equation above must be equal to the following equation
obtained by (2) for the kth step.

φN (k, j) = − [
Xk+2φN (k + 1, j)+ Yk+2φN (k + 2, j)

]
(25)
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The above equality can be rewritten with the help of (17) and (18).

Bk+2φN (k, j)+ �k+2φN (k + 1, j)+ Bk+2ek−2φN (k + 2, j) = 0 (26)

If (24) and (26) are equal, the coefficients must be equal. Firstly, we start with the coef-
ficients of φN (k + 1, j) in (24) and (26). It can be easily seen that these coefficients
are equal since from the induction hypothesis, we already assumed that Xk = �k/Bk

and Yk+1 = (Bkek−1) /Bk+1 are true.
If the coefficients of φN (k, j) in (24) and (26) are equal, proof will be complete

for (17), (18) and (19). We assume that it is true up to the (k − 1)th step. Similarly,
multiplying the (k − 1)th row of AN with the (k − 1)th column of �N gives the
equality.

ak−1φN (k − 3, j)+ bk−1φN (k − 2, j)+ ck−1φN (k − 1, j)+ dk−1φN (k, j)

+ ek−1φN (k + 1, j) = 0 (27)

Using (2) into (30) gives

[
ck−1 + Xk−1 Xkak−1 − (Xkbk−1 + Yk−1ak−1)

]
φN (k − 1, j)

+ (dk−1 + Xk−1Ykak−1 − Ykbk−1) φN (k, j)+ ek−1φN (k + 1, j) = 0 (28)

After multiplying with Bk , the equation becomes

[
Bkck−1 + Bk Xk−1 Xkak−1 − Bk (Xkbk−1 + Yk−1ak−1)

]
φN (k − 1, j)

+ (Bkdk−1 + Bk Xk−1Ykak−1 − BkYkbk−1) φN (k, j)+ Bkek−1φN (k + 1, j) = 0

(29)

Using Xk−1 = �k−1/Bk−1 and Yk−1 = (Bk−2ek−3) /Bk−1 in (2), the equation

φN (k − 1, j)=− [
(�k+1/Bk+1) φN (k, j)+[

(Bkek−1) /Bk+1
]
φN (k + 1, j)

]
(30)

is obtain. This equation can be rewritten as follows.

Bk+1φN (k − 1, j)+ �k+1φ(k, j)+ Bkek−1φN (k + 1, j) = 0 (31)

The coefficient of (29) and (31) must be equal. Then we investigate the coefficients of
φN (k + 1, j). If the coefficients are equal, we can write the following equality with
the help of the formulations for Xk−1, Xk and Yk−1 formulations.

Bk−1Bkck−1 − �k−1�kak−1 − Bk−1�kbk−1 − Bk−2Bkak−1ek−3

= Bk−1Bkck−1 − Bk−1�kbk−1 + Bk−1ak−1

× [
�k−1dk−2 − ek−3 (Bk−2ek−2 − Bk−3ak−2ek−4)

]
(32)
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This equality can be rewriten as

Bk−1Bkck−1−Bk−2Bkak−1ek−3 =Bk−1Bk+1+�k−1�kak−1 + Bk−1�kbk−1 (33)

After multiplying with Xk and adding Bk�kdk−1, the above equality turns into

Bk�kdk−1 − Bkek−2 (Bk−1ck−1 − Bk−2ek−3ak−1)

= �k (Bkdk−1 + �k−1ak−1ek−2 − Bk−1bk−1ek−2)− Bk−1Bk+1ek−2 (34)

On the right hand side of (34), the term in the paranthesis equals �k+1. After multi-
plying with ak/Bk and adding Bk+1ck − �k+1bk , the following equality is obtained.

Bk+1ck − �k+1bk + ak
[
�kdk−1 − ek−2 (Bk−1ck−1 − Bk−2ek−3ak−1)

]

= Bk+1ck − �k+1bk + (�k�k+1/Bk) ak − (Bk−1Bk+1ek−2/Bk) ak (35)

Multiplying the last two terms at the right hand side of (35) by Bk+1/Bk+1 will not
alter the equality.

Bk+1ck − �k+1bk + ak
[
�kdk−1 − ek−2 (Bk−1ek−1 − Bk−2ak−1ek−3)

]

= Bk+1ck − (�k+1/Bk+1)Bk+1bk + (
�k+1�k/Bk + 1Bk

)
Bk + 1ak

− (Bk−1ek−2/Bk)Bk+1ak (36)

The left hand side of the equality equals Bk+2 and the right hand side equals the
coefficients of φN (k, j) in (24) with the help of Xk, Xk+1 and Yk .

Similarly, Ti = γi/βi , Zi = (βi−1acol−i ) /βi and ηi = βi/βi−1 can be proven.

Theorem 3.1 The equalities used to find the diagonal and the first subdiagonal ele-
ments of the inverse matrix �N can be written as

φN (i, i) = 	i/(
i	i −�i�i ) (37)

φN (i + 1, i) = �i/(�i�i −
i	i ) (38)

where 	i = 1 − Z N+2−i Yi+1, �i = TN+2−i − Z N+2−i Xi+1, �i = Xi+2αi+2 −
ei TN+1−i and 
i = αi+2 − ei Z N+1−i .

(37) and (38) are not singular unless the determinants of the forward and backward
leading principal submatricies of AN are zero.

Proof First, we concentrate on 	i and �i , the numerators of (37) and (38). The
expressions can be re-written as follows using expansions of Z N+2−i , TN+2−i ,Yi+1
and Xi+1.

	i = (βN+2−i Bi+1 − βN+1−i Bi ai+1ei−1) / (βN+2−i Bi+1) (39)

�i = (γN+2−i Bi+1 − βN+1−i�i+1)/(βN+2−i Bi+1) (40)
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The denominators of (39) and (40) are multiplications of determinants of the forward
and backward leading principal submatrices of AN . If these determinants are not equal
to zero, (39) and (40) are not singular.

The proof will be complete after showing that
i	i −�i�i is not equal to zero if the
determinants are not equal to zero. For the proof, the following lemma is neccessary.

Lemma 3.3


i	i −�i�i = BN+2/(BN+1βN+2−i ) (41)

Proof The equalities 	i ,�i , �i and 
i can be reorganized as

	i = λi/βN+2−i Bi+1 (42)

�i = ωi/βN+2−i Bi+1 (43)

�i = ψi/βN+1−i Bi+1 (44)


i = ξi/βN+1−i Bi+1 (45)

λi = βN+2−i Bi+1 − βN+1−i Bi ai+1ei−1, ωi = γN+2−i Bi+1 − βN+1−i�i+1, ψi =
�i+2βN+1−i − γN+1−i Bi+1ei and ξi = βN+1−i Bi+2 − βN−i Bi+1ei in here. With the
help of these expressions, equality (41) can be re-written as follows

(ξiλi −�iωi )/(βN+1−i Bi+1) = BN+2 (46)

With the help of Laplace Expansion, ξi is equal to the determinant of KN−1 which is
the matrix obtained after deleting (i + 1)th row and (i + 1)th column of the pentadi-
agonal matrix AN . Similarly λi , ωi and ψi are equal to the determinants of the matrix
obtained respectively by deleting the i th row and the i th column of AN , the i th row
and the (i + 1)th column of AN and (i + 1)th row and i th column of AN . With the
help of the Sylvester Determinant Identity, equality (46) is valid. Since BN+2 is one
of the leading principal submatrices of AN , the left hand side of (41) are not singular
unless the determinants of principal submatrices are zero.

Although the necessary and sufficient condition given by the theorem seems to be
somewhat restrictive, it really is not so. The former of these conditions, that is the for-
ward leading principal submatrices being non-singular is the requirement for Gauss
elimination by creating zeroes under the main diagonal without any need for pivot-
ing. The latter of these conditions, that is the backward leading principal submatrices
being non-singular is the requirement for Gauss elimination by creating zeroes above
main diagonal without any need for pivoting. It is quite evident that need for pivoting
will result in the band structure of the original matrix, in this case a pentadiagonal
envelope.

4 Performance analysis of the method

In this section, computational cost is shown with the help of algorithmic and theorical
explanations. To explain the algorithm, a pseudo code of the method is given below.
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Input arrays a, b, c, d and e of the matrix AN
Assign X1 = 0, X2 = 0, Y1 = 0, Y2 = 0, T1 = 0, T2 = 0, Z1 = 0,
Z2 = 0, α1 = 0, α2 = 0, η1 = 0 and η2 = 0.

For i = 2 to N
Calculate Xi , Yi , Ti , Zi , αi and ηi

EndFor

For i = 1 toN − 1
Calculate 	i , �i , �i and 
i
Calculate φN (i, i)
Calculate φN (i + 1, i)

EndFor

For i = 3 toN
For j = 1 to i − 2

Calculate φN (i, j)
EndFor

EndFor

For i = N + 3 to 1
For j = i + 1 to N

Calculate φN (i, j)
EndFor

EndFor

The computational cost of the first “for” cycle is 33(N − 1). According to
Lemma 3.2, it looks as if some of the fractions used are unnecessary, however this may
not be true in certain cases. It has been observed during numerical applications that
the recursive relations used during the construction of the inverse of pentadiagonal
matrix may result in numerical values to grow in an uncontrolled manner. To avoid
this, scaling factors were used. Since these scalings bring only an additional expense
of O(N ), they are of tolerable nature.

Cost of the second “for” cycle arises from obtaining diagonal and first subdiagonal
elements of the inverse matrix �N which is 20(N − 1). With the help of these com-
putations, to find all elements of the inverse matrix�N the computational cost is only
3N 2 +2N −5. Together with certain additional minor calculations the total cost turns
out to be 3N 2 + 54N − 36.

There are two reasonably recent publications on this subject. The first of these is by
Zhao and Huang [4]. The computational complexity of their method is O(N 3) which
is quite costly in comparison to the O(N 2) method suggested by the present authors
[2]. It is no surprise that even for relatively small N values the method of reference [4]
is incomparibly slower than that of reference [2] which was published by the present
authors half a decade prior to reference. The result of reference [4] are compared in
Fig. 1 with those of the one discussed here.

The second of these methods is that of Hadj and Elonafi [6]. It is clearly much
faster than that of reference [4]. However it is not clear how the authors claim that
their method is of order O(N ). Our implementations show an O(N 2) behaviour for
their method and which is that of the order of the method discussed in the present arti-
cle also. A comparison of the method of reference [6] and that of the present method
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Fig. 1 Time comparison of Zhao and Huang method [4] with the present method

Fig. 2 Time comparison of Hadj and Elounafi method [6] with the present method

is given in Fig. 2. The N 2 behaviour is quite evident with the parabolic shape of both
methods. However the two graphs favour the present method.

The pseudo code can be organized according to the different structures of C and
Fortran programming languages. In the parallel code of the method [4], elements of
the inverse matrix was constructed row by row in accordance with the structure of C
language.

5 Conclusion

The mathematical structure of an inversion method previously suggested by the authors
[2] and recently adopted parallel processing [4] by one of the authors is further ana-
lyzed here, leading to the rather general necessary and sufficient condition for the
method to work.

An important factor which makes the method superior to most other methods is
due to its low computational cost. The calculation of the inverse of the pentadiagonal
matrices requires the solution of second order difference equations. The method keeps
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the main computational cost at O(N 2)with a coefficient value 3. This results in a total
computational cost of 3N 2 + 54N − 36 and is the cheapest of its kind [5,6].
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